APPLICATION OF INTELLIGENT MEASUREMENT TECHNOLOGIES FOR THE ANALYSIS OF OPERATIONAL PARAMETERS OF ROAD CONSTRUCTION MACHINERY

Authors

  • M. Krainiuk Харківський національний автомобільно-дорожній університет
  • O. Shcherbak Харківський національний автомобільно-дорожній університет

DOI:

https://doi.org/10.33042/2522-1809-2025-1-189-13-20

Keywords:

grader, neural networks, prediction, intelligent technologies, measurement accuracy, monitoring, technical systems, innovative technologies, sensors, environmental safety

Abstract

The increasing mechanisation of the construction and road sectors necessitates improvements in the operational characteristics of road construction machinery, particularly in minimising noise pollution. Excessive noise generated by machinery such as motor graders affects operators' working conditions and the durability of machine components. This study focuses on applying intelligent measurement technologies to evaluate and optimise the acoustic characteristics of road construction machinery, emphasising noise prediction and reduction strategies.
The research introduces a novel methodology for noise measurement using the DZ-99 motor grader, ensuring accurate data collection for assessing the machine’s operational parameters and environmental impact. Various factors influencing noise levels, such as engine speed, gear ratios, and measurement distances, were analysed through experimental studies. The results confirmed the presence of hazardous frequency ranges and enabled the calculation of measurement errors, which is crucial for optimising machine operating conditions.
A neural network-based noise prediction model was developed with high accuracy (correlation >0.9), demonstrating its practical value in analysing working processes and mitigating noise pollution. Implementing artificial intelligence in machine monitoring systems allows for real-time noise analysis, improving road construction equipment's operational efficiency and safety. The study also highlights the potential of integrating machine learning techniques to enhance acoustic assessments' precision and develop proactive noise reduction measures.
An intelligent noise monitoring system was proposed for real-time analysis, enhancing operators' conditions, ensuring regulatory compliance, and supporting sustainable construction. The study offers insights into optimizing operations and reducing noise exposure. The results of this study can be used to enhance existing evaluation methods for noise pollution, improve the reliability and safety of road construction equipment, and facilitate the development of intelligent systems for automated noise control. Future research should focus on refining noise prediction algorithms by incorporating additional factors such as terrain type, environmental conditions, and machine wear levels to enhance the accuracy and applicability of intelligent noise measurement technologies.

References

Zaman Muzafar Environmental noise-induced cardiovascular, metabolic and mental health disorders: a brief review / Zaman, Muzafar; Muslim, Mohammad; Jehangir, Arshid. // Environmental Science and Pollution Research, 2022, 29.51: 76485-76500.

Hahad O. Noise and mental health: evidence, mechanisms, and consequences / Hahad O, Kuntic M, Al-Kindi S, Kuntic I, Gilan D, Petrowski K, Daiber A, Münzel T. // Journal of Exposure Science & Environmental Epidemiology, 2024 Jan 26. 2024, 1-8. doi: 10.1038/s41370-024-00642-5.

Serin, H. Noise level analysis of a bulldozer used in constructing a forest road in Mediterranean region of Turkey / Serin, H., Akay, A. // African Journal of Agricultural Research, 2010, 5, 2624-2628.

Nourani Vahid Artificial intelligence based ensemble model for prediction of vehicular traffic noise / Nourani, Vahid; Gökçekuş, Hüseyin; Umar, Ibrahim Khalil. // Environmental research, 2020, 180: 108852.

Krainiuk M. Hygienic assessment of the working conditions of the tractor driver's workplace in modern machine-tractor units / Krainiuk M.., Krainiuk O. V., Sherbak O. V. // Modern research in science and education. Proceedings of the 10th International scientific and practical conference. BoScience Publisher. Chicago, USA. 2024. Pp. 263-273.

Sehsah, E.E. Noise test of two manufactured power tillers during transport on different local road conditions/ Sehsah, E.E., Abass Helmy, M. and Sorour, H.M. // International Journal of Agricultural and Biological Engineering, 2010, 3(4), 19-27. DOI: 10.3965/j.issn.1934-6344.2010.04.009-017

Behroozi Lar Noise level of two types of tractor and health effect on drivers / Behroozi Lar, M., Pour, Z.K., Payandeh, M. and Bagheri, J. // Journal of American Science, 2011, . 7(5). 382-387.

Lashgari M. Psychoacoustic evaluation of a garden tractor noise / Lashgari, M. and Maleki, A. // Agricultural Engineering International: CIGR Journal, 2015, 17(3), 231-241.

Melemez K. The investigation of the ergonomic aspects of the noise caused by agricultural tractors used in Turkish forestry / Melemez, K. and Tunay, M.// African Journal of Agricultural Research, 2010, 5(4), 243-249.

Monazzam M.R. Tractor drivers and bystanders noise exposure in different engine speeds and gears / Monazzam, M.R., Nadri, F., Khanjani, N., Ghotbi Ravandi, M.R., Nadri, H., Barsam, T., Shamsi, N., Akbari, H. and Akbari, H. // Journal Mil. Med., 2012, 14(2), 149-154.

Hassan-Beygi. Prediction of a power tiller sound pressure levels in octave frequency bands using artificial neural networks / Hassan-Beygi , Barat Ghobadian Mohammad-Hosein Kianmehr, Reza Amiri // Int J Agri Biol, 2007, 3.9: 494-496.

Choi J. Automated noise exposure assessment model for the health of construction workers / Choi, J., Kang, H., Hong, T., Baek, H., Lee, D.// Automation in Construction, 2021, 126, 103657. https://doi.org/10.1016/J.AUTCON.2021.103657.

Said, K. Occupational Noise Exposure Among Road Construction Workers / Said, K., Haron, Z., Saim, A., Abidin, M., Yahya, K., Han, L.// Jurnal Teknologi (Sciences & Engineering), 70(7). 2014, 70, 15-19. https://doi.org/10.11113/JT.V70.3571.

Крайнюк М. Ю. Смарт безпека: штучний інтелект та датчики для забезпечення промислової безпеки / Метрологічні аспекти прийняття рішень в умовах роботи на техногенно небезпечних об’єктах: Матер. Всеукр. наук.-практ. конф., 2023, С. 91-95.

Published

2025-04-02

How to Cite

Krainiuk, M., & Shcherbak, O. (2025). APPLICATION OF INTELLIGENT MEASUREMENT TECHNOLOGIES FOR THE ANALYSIS OF OPERATIONAL PARAMETERS OF ROAD CONSTRUCTION MACHINERY. Municipal Economy of Cities (Technical Science), 1(189), 13–20. https://doi.org/10.33042/2522-1809-2025-1-189-13-20

Issue

Section

статьи