анализ существующих ассоциаций и их разложение (декомпозицию) на стержневые сущности. Такой метод выравнивает возможности участия в обсуждении модели будущих пользователей, которые привнесли исходные ассоциации, и разработчиков, которые могут более корректно синтезировать (после декомпозиции) новые ассоциации, легко настраиваемые на конечных пользователей системы.

- 1.Вендров А.М. САЅЕ-технологии. Современные методы и средства проектирования информационных систем. СПб.: HEBA-ПРЕСС. 238 с.
- 2.Дэвид А.Марка и Клемент МакГоуэн. Методология структурного анализа и проектирования SADT. СПб.: Невский диалект, 2003. 560.
- 3.Гради Буч. Объектно-ориентированный анализ и проектирование. СПб.: Невский диалект. 2002. 560 с.

Получено 16.02.2006

УДК 656.02: 338.47

И.А.ГАВРИЛЕНКО, Н.И.САМОЙЛЕНКО, д-р техн. наук Харьковская национальная академия городского хозяйства

О ВЫБОРЕ ОПТИМАЛЬНОГО ВАРИАНТА ПРОЕКТИРОВАНИЯ И ЭКСПЛУАТАЦИИ ТРУБОПРОВОДНЫХ ТРАНСПОРТНЫХ СИСТЕМ

Рассматриваются вопросы повышения надежности трубопроводных транспортных систем со сложной структурой. Выполнен расчет надежности поставки целевого продукта конкретному потребителю на примерах кольцевания сети и ввода мостовых соединений. Обосновывается выбор оптимального варианта развития системы.

Понятие «надежность» применительно к трубопроводным транспортным системам (ТТС) можно рассматривать как свойство систем:

- а) бесперебойно снабжать потребителей в необходимом количестве целевым продуктом (ЦП) требуемого качества;
- б) не допускать ситуаций, опасных для людей и окружающей среды.

При рыночном характере экономики Украины на первый план выходит надежность поставки ЦП конкретному пользователю. Особенно актуальным этот показатель является для потребителей с непрерывным производственным циклом, в которых перебои с поставкой ЦП приводят к значительным материальным потерям или грозят экологической катастрофой. Для таких потребителей показатель надежности поставки ЦП должен быть близким к единице. При заключении договоров на поставку ЦП потребитель должен знать значение этого показателя. В случае если он ниже допустимого, потребитель, заключивший договор, окажется в критической ситуации, грозящей ему опасными осложнениями.

Поставщики не менее потребителей заинтересованы в знании текущего значения надежности поставки ЦП тому или иному потребителю, чтобы в случае недостаточно высокого его значения вовремя скорректировать этот показатель. Следовательно, расчет надежности поставки ЦП конкретному пользователю является крайне актуальным как для поставщиков, так и для потребителей.

Существующие подходы к расчету надежности поставки ЦП в сложных ТТС не позволяют по имеющимся техническим параметрам оценивать и сравнивать такую характеристику, как время, в течение которого потребитель получает ЦП [1, 2]. Поэтому возникает необходимость в разработке подхода к оценке надежности функционирования ТТС, который позволит проанализировать изменение времени получения ЦП конкретным потребителем и выбрать способ оптимального увеличения надежности поставки ЦП.

Целью исследования является расчет надежности поставки ЦП проектируемых и эксплуатируемых ТТС со сложной топологической структурой на примерах ввода мостовых соединений и кольцевания сети, обоснование выбора рационального варианта развития сети.

Предлагаемый метод основывается на расчете времени, в течение которого потребитель получает или не получает ЦП. Данная числовая характеристика — время — легко определяется по статистическим данным, которые накапливаются на каждом предприятии, эксплуатирующем ТТС. Статистические данные (параметры потока отказов) наиболее объективно отражают состояния компонент сети. Связано это с тем, что любые другие технические параметры (не статистические) не могут учесть все условия, в которых находится каждый участок сети, все внутренние и внешние нагрузки на эти участки, степень физического износа, степень агрессивности среды и т.п. Метод расчета надежности поставки ЦП конкретному потребителю включает:

- составление для конкретного потребителя расчетной модели надежности, в которой отражены типы соединений всех структурных компонент сети;
- определение вероятности нахождения всей системы в состоянии с одним отключенным участком, двумя отключенными участками;
- определение времени нахождения каждого участка в отключенном и работоспособном состояниях;
- определение вероятности поставки ЦП каждому конкретному потребителю.

Рассмотрим предлагаемый метод на конкретных примерах. Исходные данные и структура TTC представлены на рис.1.

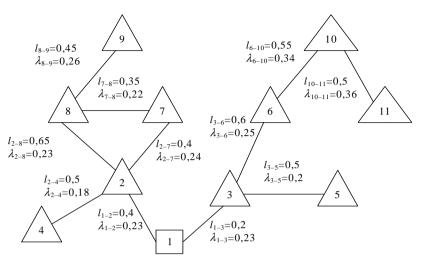


Рис.1 – Разветвленная сеть подачи целевого продукта потребителям от источника

Для каждого трубопровода указана его длина (l) в километрах и параметр потока отказов (λ) в $\frac{1}{\text{км} \cdot \text{год}}$. В сети присутствует один источник целевого продукта (1) и десять потребителей (2-11).

В качестве примеров, рассмотрим только два наиболее удаленных от источника потребителя с номерами 9 и 11.

Проанализируем изменение показателей надежности на примере проведения мероприятий по повышению устойчивости работы системы. Среди таких мероприятий выделим:

- 1) кольцевание сети;
- 2) добавление мостовых соединений в местах с низкой надежностью.
- 1. Рассмотрим, как изменится надежность поставки ЦП, если проложить трубопроводы между потребителями 4 и 8, 9 и 10, 5 и 11. На рис.2 пунктирными линиями обозначены новые трубопроводы с указанием значений длин этих участков и параметров отказов.

Расчетные модели надежности поставки ЦП для потребителей с номерами 9 и 11 представлены на рис.3.

Полученные значения показателей надежности приведены в таблице. Наблюдается их увеличение по сравнению со значениями исходных показателей, что подтверждает необходимость в закольцовывании сети как эффективном способе повышения надежности поставки ЦП.

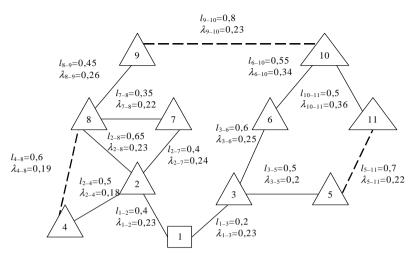


Рис.2 – Пример кольцевания сети

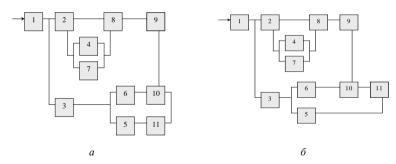


Рис.3 — Расчетная схема определения надежности поставки ЦП для потребителей 9 (a) и 11 (δ)

2. Другим способом повышения надежности ТТС является дублирование трубопроводов. Для обеспечения профилактических работ и для дальнейшего повышения надежности параллельных трубопроводов вводят перемычки, что приводит к мостовым моделям надежности.

Рассмотрим, как изменится надежность поставки ЦП, если проложить дополнительные трубопроводы между участками трубопроводов 2-7 и 3-6; 8-9 и 6-10. На рис.4 пунктирными линиями обозначены новые трубопроводы, указаны значение длин этих участков и параметры отказов.

Расчетная модель надежности поставки ЦП для потребителей 9 и 11 представлена на рис.5.

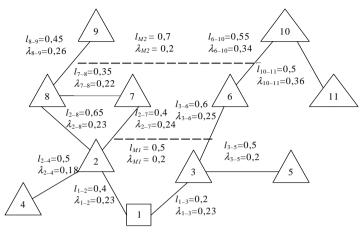


Рис.4 – Пример ТТС с мостовыми соединениями

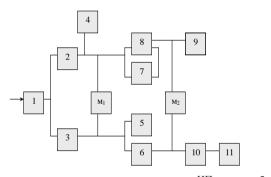


Рис.5 – Расчетная схема определения надежности поставки ЦП для потребителей 9 и 11

Полученные значения показателей надежности при вводе мостовых соединений приведены в таблице.

Оптимизация надежности проектируемой сети может обеспечиваться на основе двух основных подходов:

- 1) минимизация затрат при условии обеспечения требуемого (заданного) уровня надежности, измеряемого соответствующими показателями;
- 2) минимизация затрат с учетом ущерба, вызываемого нарушениями снабжения потребителей ЦП вследствие отказов в системе.

В качестве критерия для оптимизации надежности ТТС в первом случае может быть принят, например, минимум приведенных затрат S_3 по системе, включающих, кроме капиталовложений S_K , приведенных к

расчетному году, ежегодные издержки S_H :

$$S_3 = E_H S_K + S_M \to \min, \tag{1}$$

где E_H – нормативный коэффициент эффективности капиталовложений.

	C	равнительные показател	и надежности	поставки ЦІ	П конк	ретным по	отребителям
--	---	------------------------	--------------	-------------	--------	-----------	-------------

Потре- битель	Состояние ТТС	Относительное время получения ЦП потребителем, %	Относительное время, в течение которого потребитель не получает ЦП, %	Поставка ЦП, дней, ч, мин. в год	Недопо- ставка ЦП, ч, мин. в год
	ТТС в исход- ном состоя- нии	99,9426964	0,0573036	364 дня 18 ч 59 мин.	5 ч 1 мин.
Потреби- тель 9	ТТС с учетом мостовых соединений	99,9248465	0,0751535	364 дня 17 ч 25 мин.	6 ч 35 мин.
	ТТС с учетом кольцевания	99,9478999	0,0521001	364 дня 19 ч 26 мин.	4 ч 34 мин.
	ТТС в исходном состоянии	99,8753561	0,124639	364 дня 13 ч 5 мин.	10 ч 55 мин.
Потреби- тель 11	ТТС с учетом мостовых соединений	99,8855762	0,1144238	364 дня 13 ч 59 мин.	10 ч 1 мин.
	ТТС с учетом кольцевания	99,9413943	0,0586057	364 дня 187 ч 52 мин.	5 ч 8 мин.

Во втором случае в состав затрат включается, кроме того, среднегодовой ущерб от нарушения снабжения потребителей целевым продуктом S_{y} [3]:

$$S_3 = E_H S_K + S_M + S_V \to \min. \tag{2}$$

Ущерб представляет собой комплексный экономический показатель, который является одной из важнейших характеристик, определяющих понятие надежности как экономической категории. Ущерб характеризует свойство потребительской стоимости ЦП, поставляемого с определенной надежностью. Он используется при определении экономической эффективности повышения надежности водо- или газоснабжения и выборе оптимального варианта системы с учетом фактора надежности. Ущерб также играет существенную роль при подсчете штрафов или неустоек, связанных с нарушением договорных обязательств, вызванных перерывами в снабжении потребителей ЦП.

При определении ущерба необходимо учитывать следующие составляющие:

- потери ресурсов при отказах;
- затраты на уменьшение потерь ресурсов при отказах;
- затраты на компенсацию негативных последствий отказов;
- затраты на снижение вероятности отказов;
- затраты на изменение критериев отказов.

В целом понятие ущерба от нарушения снабжения ЦП может быть определено как разрыв между сложившимся уровнем удовлетворения потребностей общества в ЦП и возможным уровнем его удовлетворения при абсолютной надежности ТТС и ее элементов.

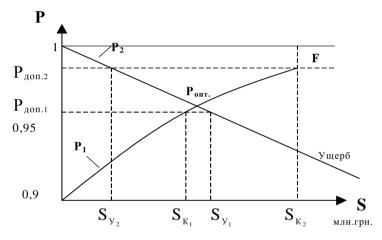


Рис.6 – График определения допустимой и оптимальной надежности поставки ЦП

На рис.6 ось P – надежность поставки ЦП, ось S – затраты на содержание системы и затраты, связанные с ущербом, P_1 – кривая расчетной надежности поставки ЦП, P_2 – кривая ущерба. Как видно из графика, надежность тесно взаимосвязана с расходами на содержание технического состояния ТТС и размерами ущерба. Техническими мероприятиями по модернизации ТТС может быть достигнут уровень надежности поставки $P_{\text{доп.1}}$ – при применении мостовых соединений и $P_{\text{доп.2}}$ – при кольцевании сети. Предел допустимого увеличения надежности поставки ЦП ограничен точкой F на кривой P_1 . Опустив перпендикуляр на ось затрат, получаем предельные затраты, связанные с ущербом. Таким образом, ущерб при разработке мероприятий, связанных с увеличением надежности, будет определять максимальные за-

траты.

При добавлении мостовых соединений и уровне надежности $P_{\text{доп.1}}$ затраты по системе составят

$$S_3 = E_H S_{K_1} + S_M + S_{V_1} \rightarrow \min.$$

При кольцевании сети и уровне надежности $P_{\text{доп.2}}$ затраты составят

$$S_3 = E_H S_{K_2} + S_M + S_{Y_2} \rightarrow \min.$$

Кривые P_1 и P_2 пересекаются в точке $P_{\text{опт.}}$. Точка $P_{\text{опт.}}$ — точка оптимальных затрат, так как ее положение связано с минимально допустимыми затратами на реконструкцию системы и ущерб, обеспечивающими заданную надежность.

Выводы. Проведен сравнительный анализ показателей надежности для существующей и проектируемой ТТС на двух примерах повышения надежности, а именно, кольцевание сети и ввод мостовых соединений. Результаты расчетов позволяют сделать вывод, что наиболее эффективным способом повышения надежности ТТС и надежности поставки ЦП конкретным потребителям является кольцевание сети. Предложено графическое описание обоснования выбора оптимального варианта проектирования системы с применением критерия оптимизации надежности. Метод надежности поставки ЦП конкретному потребителю, включающий использование статистических данных о состоянии трубопроводов, позволяет оценить надежность ТТС и найти способ оптимального увеличения надежности поставки ЦП путем инженерных мероприятий по кольцеванию сети и устройству мостовых соединений.

Получено 24.02.2006

^{1.}Ионин А.А. Надежность систем тепловых систем. – М.: Стройиздат, 1989. – 268 с.

^{2.} Коваленко И.Н., Кузнецов И.Ю. Методы расчета высоконадежных систем. – М.: Радио и связь, 1988. – 176 с.

^{3.}Надежность систем энергетики и их оборудования: Справочник. В 4-х т. / Под общ. ред. Ю.Н.Руденко. Т.2. Надежность электроэнергетических систем / Под ред. М.Н.Розанова. – М.: Энергоатомиздат, 2000. – 568 с.