УДК 656

С.Л.ЛАПСКИЙ, Д.П.ХОДОСКИН

Белорусский государственный университет транспорта, г.Гомель

РАЗРАБОТКА ОРГАНИЗАЦИОННО-ТЕХНИЧЕСКИХ МЕРОПРИЯТИЙ ПО УЛУЧШЕНИЮ ОРГАНИЗАЦИИ ДОРОЖНОГО ДВИЖЕНИЯ НА ПЕРЕКРЕСТКЕ ул.ИЛЬИЧА – ул.ЗАЙЦЕВА г.ГОМЕЛЯ

Анализируются характеристики транспортных и пешеходных потоков на объекте улично-дорожной сети, рассмотрено предложение по изменению цикла светофорного регулирования с целью снижения задержек транспортных средств, а также числа дорожно-транспортных происшествий.

Аналізуються характеристики транспортних і пішохідних потоків на об'єкті вулично-дорожньої мережі, розглянуто пропозицію щодо зміни циклу світлофорного регулювання з метою зниження затримок транспортних засобів, а також числа дорожньотранспортних випадків.

The analysis of descriptions of transport and pedestrian streams is resulted on an object to street-road networks and suggestion on the change of cycle of the traffic-light adjusting is considered with the purpose of decline of delays of transport vehicles, and also number of road traffic accidents.

Ключевые слова: улично-дорожная сеть, организация дорожного движения, задержки транспортных средств, светофорное регулирование.

С ростом города увеличивается и число автомобилей на его улицах. На сегодняшний день перекрестки, спроектированные даже в новых, развивающихся районах, уже не могут в полной мере справиться с потоком автомобилей. На исследуемом перекрестке наблюдается рост потерь от задержек автомобилей в главном направлении и увеличение количества аварий. Одним из путей решения такой проблемы является оптимизация светофорного регулирования.

Техническая характеристика перехрестка. Перекрёсток улиц Ильича и Зайцева является Т-образным регулируемым (РПК). Ул.Ильича имеет по две полосы движения в соответствующих направлениях. Ширина полос составляет по 3,5 м. По краям дорог с одной стороны расположены пешеходные тротуары шириной 2 м, с другой стороны такие же тротуары отделены от проезжей части газоном шириной 5 м. Проезжая часть находится в хорошем состоянии. На протяжении всей улицы уложено новое асфальтовое покрытие, на одном уровне с которым установлены канализационные люки и ливневые решетки. Для разделения транспортных потоков противоположных направлений нанесена дорожная разметка 1.3 (двойная сплошная линия), а для разделения транспортных потоков попутного направления — 1.5 (прерывистая линия), пешеходные переходы обозначены разметкой 1.14.3

(две прерывистые линии). Ул.Зайцева имеет по одной полосе движения в соответствующих направлениях шириной по 5,1 м. В месте примыкания ул.Зайцева к ул.Ильича транспортные потоки разделяются на три полосы: две полосы при выезде на ул.Ильича и одна полоса при въезде на ул.Зайцева, ширина полос при этом составляет 3,5м. С обеих сторон улицы идут тротуары шириной 2-4 м. Дорожное покрытие находится в неудовлетворительном состоянии – имеются ямы, выбоины, провалившиеся люки, плохо организована ливневая канализация. Дорожная разметка практически отсутствует.

Перекресток оборудован дорожными знаками в соответствии с правилами дорожного движения. Все знаки находятся в надлежащем состоянии и хорошо видны. Имеется частичное дорожное ограждение металлического перильного типа.

Характеристика существующего светофорного регулирования. Данная характеристика приведена на рис.1, 2.

Номер свето- фора	График включения сигналов	Длительность, с			
T1,T2		T_3 28	<i>T</i> _ж	T _{KP}	<i>T_{КЖ}</i> 3
Т3		T ₃	<i>T</i> _Ж	T _{KP} 28	<i>T_{KЖ}</i> 3
П1,П2		T ₃	T_{3M}	<i>T_{KP}</i> 36	
П3		<i>T</i> ₃ 21	T_{3M}	T _{KP} 25	

Рис.1 – График существующего режима работы светофорной сигнализации

Длительность циклов светофорного регулирования составляет 52 с. Перекресток оборудован транспортными и пешеходными светофорами, которые работают в двухфазном режиме (рис.2).

При нерегулируемом режиме работы светофоров преимущество имеют транспортные средства, движущиеся по главной дороге – улице Ильича.

Расчет оптимального режима работы светофорной сигнализации. Процессу организации и регулирования дорожного движения должно предшествовать всестороннее его изучение с целью определения параметров транспортных потоков и оптимального светофорного регулирования. Для определения данных параметров были выполнены экспериментальные исследования по методике, изложенной в [1, 2]. Исследования выполняли в период с 17 до 18 ч.

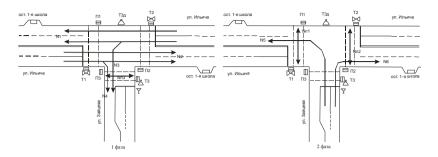


Рис.2 – Схема пофазного движения на исследуемом РПК

На основании экспериментальных данных по интенсивности движения определяется приведенная интенсивность движения транспортных средств по формуле

$$N_{\Pi P} = N_{\Pi} \cdot K_{\Pi} + N_{\Gamma} \cdot K_{\Gamma} + N_{A} \cdot K_{A} + N_{\Pi} \cdot K_{\Pi}, \text{ abt./ч}, \tag{1}$$

где $N_{\it Л.Г.А.П.}$ — интенсивность движения соответственно легковых автомобилей, грузовых автомобилей, автобусов и автопоездов в данном направлении за час в физических единицах, ед./ч; $K_{\it Л.Г.А.П.}$ — коэффициенты приведения соответственно легковых, грузовых автомобилей, автобусов и автопоездов к легковым автомобилям. Принимаются равными соответственно 1; 2; 2,5; 3.

Приведенная интенсивность движения транспортных средств по направлениям составила: по главному – $N_{1\Pi P}=588$ авт./ч; $N_{2\Pi P}=655$ авт./ч; $N_{3\Pi P}=191$ авт./ч; $N_{4\Pi P}=258$ авт./ч; по второстепенному – $N_{5\Pi P}=305$ авт./ч; $N_{6\Pi P}=137$ авт./ч.

Часовая приведенная интенсивность по главному и второстепенному направлениям определяется путем суммирования значений приведенной интенсивности направлений движения входящих соответственно в главное и второстепенное направление.

Далее рассчитывается суточная приведенная интенсивность движения по главной и второстепенной дорогам по формуле

$$N_{cym} = N_{HII}/K_H , abt./cyt., (2)$$

где $N_{\rm Ч II}$ – приведенная интенсивность движения в час «пик» по главному и второстепенному направлениям, авт./ч; K_H – коэффициент неравномерности, принимается равным 0,1.

Суточная приведенная интенсивность движения по главному и второстепенному направлениям соответственно равна:

$$N_{cym} = (588 + 655 + 191 + 258)/0,1 = 16920$$
 авт./сут.;
 $N_{cym} = (305 + 137)/0,1 = 4420$ авт./сут.

Интенсивность движения пешеходных потоков составила: для ул.Ильича — $N_{cymII1}=805\,$ пеш./сут., $N_{cymII2}=1597\,$ пеш./сут.; для ул.Зайцева — $N_{cymII3}=964\,$ пеш./сут.

При обследовании состава транспортного потока было выявлено, что он является преимущественно легковым (доля легковых автомобилей составляет 88, грузовых -7 и автобусов -5%).

Анализ аварийности на данном перекрестке показал, что все аварии происходят из-за конфликта между транспортными потоками, поэтому еще и по этой причине необходимо пересмотреть режим работы светофорной сигнализации.

Длительность цикла можно определить по формуле, предложенной Ф. Вебстером [2]

$$T_{II} = (1, 5 \cdot T_{II} + 5) / (1 - Y),$$
 (3)

где T_{II} — суммарная длительность промежуточных тактов, с; Y — сумма всех фазовых коэффициентов.

В свою очередь, суммарная длительность промежуточных тактов

$$T_{II} = \sum_{1}^{n} t_{ni} , \qquad (4)$$

где n – число фаз.

По соображениям безопасности дорожного движения длительность цикла не может быть менее 25 и более 120 с [2].

Длительность основного такта t_{oi} в i-й фазе регулирования обратнопропорциональна расчетному фазовому коэффициенту этой фазы и определяется как:

$$t_{oi} = (T_{II} - T_{II}) y_i / Y. \tag{5}$$

В целях безопасности дорожного движения t_{oi} обычно принимается не менее 7 с [1]. Расчетную длительность основных тактов необходимо проверить на обеспечение ими пропуска пешеходов в соответствующих направлениях. Время, необходимое для пропуска пешеходов по какому-либо направлению t_{mu} , рассчитывается по эмпирической формуле

$$t_{mu} = (5 + B_{mu})/v_{mu}. (6)$$

Интенсивность убывания автомобилей из очереди в условиях

максимально возможной загрузки характеризуется потоком насыщения. Величина потока насыщения определяется множеством факторов: геометрическими параметрами пересечения, составом транспортного потока, коэффициентом сцепления и другими.

Для случая движения в прямом направлении по дороге без продольных уклонов поток насыщения рассчитывается по формуле

$$M_{H.npgm} = 525B_{nq}, \qquad (7)$$

где $M_{H.nps_{M}}$ – поток насыщения, авт./ч; B_{nq} – ширина проезжей части в данном направлении движения, м.

Для случая движения транспортных средств прямо, а также налево и (или) направо по одним и тем же полосам движения, если интенсивность лево- и правоповоротного потоков составляет более 10% от общей интенсивности движения в рассматриваемом направлении данной фазы, приближенная оценка потока насыщения может быть определена как [2]:

$$M_{H} = M_{H.npsm} \frac{N_{npsm} + N_{np} + N_{nee}}{N_{npsm} + 1,75N_{nee} + 1,25N_{np}},$$
(8)

где N_{npsm} — интенсивность прямого направления, авт./ч; N_{nee} , N_{np} — интенсивность лево- и правоповоротных потоков соответственно, авт./ч.

Для право- и левоповоротных потоков, движущихся по специально выделенным полосам, поток насыщения $M_{H.nog}$ определяется в зависимости от радиуса поворота R [1]:

$$M_{H.noe} = \frac{1800}{1 + 1.525R} \,. \tag{9}$$

Фазовые коэффициенты определяются для каждого из направлений движения на перекрестке в данной фазе регулирования из выражения

$$y_{ii} = N_{ii}/M_{H.ii}$$
, (10)

где y_{ij} — фазовый коэффициент j-го направления i-й фазы; N_{ij} , $M_{H.ij}$ — соответственно, интенсивность движения и поток насыщения для j-го направления i-й фазы регулирования, авт./ч.

За расчетный (определяющий длительность основного такта) фазовый коэффициент принимается наибольшее его значение в данной фазе. Меньшие значения могут быть использованы для определения минимально необходимой длительности разрешающего сигнала в соответствующих этим коэффициентам направлениях движения. Результаты расчетов потока насыщения и фазового коэффициента для каждого из направлений, а также принятие максимального коэффициента приведены в таблице.

Направление движения	Поток насыщения в данном направлении авт./ч	1 1	Принятый максималь- ный фазовый коэффициент
1	1800	0,163	
1,3	1390	0,349	
2	1800	0,182	0,454
2,4	1215	0,454	
5	1696	0,156	
6	1542	0.068	0,156

Расчет потока насыщения и фазовых коэффициентов на РПК

По результатам расчетов следует что, фазовый коэффициент для первой фазы принимаем равным 0,454, а для второй -0,156.

В соответствии с назначением промежуточного такта его длительность должна быть такой, чтобы автомобиль, подходящий к перекрестку на зеленый сигнал с определенной скоростью, при смене сигнала с зеленого на желтый смог либо остановиться у стоп-линии, либо успеть освободить перекресток (миновать конфликтные точки пересечения с автомобилями, начинающими движение в следующей фазе). Остановиться у стоп-линии автомобиль сможет только в том случае, если расстояние от него до стоп-линии будет равно или больше остановочного пути.

В соответствии с вышесказанным, в работе [2] для определения длительности промежуточного такта в i -й фазе приводится формула

$$t_{ni} = v_a / (7, 2 \cdot a_m) + 3,6(l_i + l_a) / v_a,$$
 (11)

где v_a — средняя скорость транспортных средств на подходе к перекрестку и в зоне перекрестка без торможения, км/ч; a_m — среднее замедление транспортного средства при включении запрещающего сигнала (принимается 3-4 м/с²); l_i — расстояние от стоп-линии до самой дальней конфликтной точки, м; l_a — длина транспортного средства, наиболее часто встречающегося в потоке, м. Принимается в среднем равной 5 м.

В период промежуточного такта заканчивают движение и пешеходы, ранее переходившие улицу на разрешающий сигнал светофора. За время t_{ni} пешеход должен или вернуться на тротуар, откуда он начал движение, или дойти до середины проезжей части (островка безо-

пасности, центральной разделительной полосы, линии, разделяющей потоки встречных направлений). Максимальное время, которое потребуется для этого пешеходу, определяется по формуле

$$t_{ni(nu)} = B_{nu}/4v_{nu}, (12)$$

где B_{nu} — ширина проезжей части, пересекаемой пешеходами в i-й фазе регулирования, м; v_{nu} — расчетная скорость движения пешеходов (принимается 1,3 м/с).

В качестве промежуточного такта выбирается наибольшее значение из t_{ni} и $t_{ni(nu)}$.

Выполним расчет промежуточных тактов для РПК:

– для первой фазы:
$$t_{ni} = 45/(7, 2 \cdot 3, 5) + 3,6(8+5)/45 = 2,83$$
 с;

$$t_{ni(nu)} = 10,5/4 \cdot 1,3 = 2,02$$
 c.

– для второй фазы:
$$t_{ni} = 45/(7, 2 \cdot 3, 5) + 3,6(9+5)/45 = 2,91$$
 с;

$$t_{ni(mu)} = 14/4 \cdot 1, 3 = 2,69$$
 c.

Рассчитав цикл светофорного регулирования на исследуемом РПК по приведенной выше формуле, получим длительность цикла, равную 52 с.

Длительность промежуточных тактов примем по 3 с. Тогда длительность основных тактов будет равна:

– для первой фазы:
$$t_{oi} = (52-6) \cdot 0,454/(0,454+0,156) \approx 34$$
 с;

– для второй фазы:
$$t_{oi} = (52-6) \cdot 0.156/(0.454+0.156) \approx 12$$
 с.

На рис.3 приведен предлагаемый график режима работы светофорной сигнализации. В качестве мероприятий по оптимизации светофорного регулирования предлагается время цикла светофорного регулирования оставить без изменения, а изменить времена основных тактов.



Рис.3 – График предлагаемого режима работы светофорной сигнализации

Предлагаемая нами разработка позволит, согласно [3], снизить задержки транспортных средств, движущихся по главной дороге, и на 15% уменьшить количество всех аварий на данном светофорном объекте.

- 1. Врубель Ю.А. Организация дорожного движения. В 2 ч. – Минск: Фонд БДД, 1996. – 634 с.
- 2. Аземша С.А., Карасевич С.Н. Организация движения на регулируемых перекрестках. Гомель: БелГУТ, 2007. 56 с.
 - 3.Врубель Ю.А. Потери в дорожном движении. Минск: БНТУ, 2003. 328 с.

Получено 27.04.2010

УДК 656.11

А.А.КУСТЕНКО

Белорусский национальнный технический университет, г. Минск

ОПРЕДЕЛЕНИЕ ПОТЕРЬ ТРАНСПОРТНОГО ПОТОКА ПЕРЕД ОСТАНОВОЧНЫМ ПУНКТОМ ТРАМВАЯ

Рассматриваются задержки автомобильных транспортных средств, возникающих на остановочном пункте трамвая с посадкой пассажиров с проезжей части. Приведена методика расчета экономических потерь от указанных задержек.

Розглядаються затримки автомобільних транспортних засобів, що виникають на зупинному пункті трамвая з посадкою пасажирів із проїзної частини. Наведено методику розрахунку економічних втрат від зазначених затримок.

In article are considered delays of the automobile vehicles arising on tram-stop. Also is adduced procedure of economic losses from the specified delays.

Ключевые слова: трамвай, автомобиль, остановочный пункт, задержки, потери.

Стремительное развитие трамвайное движение обнажило ряд проблемных вопросов, таких как скорость сообщения, безопасность, конфликты с автомобильными потоками и т.д. При решении подобных проблем в Европейских странах применяют различные методы, от радикальных (выносят трамвайное полотно на обособленную территорию), так и более мягких (используют автоматизированные системы, обеспечивающие взаимодействие трамвайного движения и транспортного потока). В данной работе поставлена цель изучить и рассчитать потери автомобильного потока, возникающие на остановочном пункте трамвая. Это позволит определить пути решения подобной проблемы и снизить потери от задержек и остановок автомобильного потока.

В транспортном процессе любого маршрутного транспортного средства предусмотрены остановки с целью посадки и высадки пассажиров. В трамвайном движении можно выделить следующие типы остановочных пунктов (ОП):